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Abstract

Purpose – This paper aims to present a framework for deriving analytical and semi-numerical
models for coupled conductive-convective heat transfer processes in a borehole heat exchanger
subjected to general initial and boundary conditions.
Design/methodology/approach – The discrete Fourier transform and the spectral element method
have been utilized for deriving two spectral models for a single U-tube borehole heat exchanger in
contact with a soil mass.
Findings – Verification and numerical examples have shown that the developed models are accurate
and computationally very efficient. It is illustrated that one spectral element is capable of producing
results which are more accurate than those produced by 200 finite elements.
Practical implications – The gained computational efficiency and accuracy will boost
considerably the possibilities for more insight into geothermal analysis, which will improve the
procedure for designing competitive energy extraction systems.
Originality/value – The models are capable of calculating exactly the temperature distribution in
all involved borehole heat exchanger components and their thermal interactions.
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Paper type Research paper

1. Introduction
Borehole heat exchanger (BHE) is a geothermal heat pipe that is inserted vertically in a
borehole to form a U-shaped tube and then fixed by filling the borehole with some sort
of grout material. It consists of a pipe-in, where a fluid (refrigerant) coming from a heat
pump enters, a pipe-out, where the refrigerant leaves the U-tube and enters into the
heat pump, and a grout. The heat pump, usually located inside a building, circulates
the fluid in the BHE deep into the ground. The fluid gets in contact with the
surrounding soil via the grout, where conductive-convective heat transfer processes
occur. The heat pump works as a heat exchanger, which extracts a designed amount of
heat from the refrigerant and pumps it back to the BHE. This system has been widely
used for heating and cooling of public and residential buildings.

In practice, single or double U-tube BHEs are utilized (Figure 1). They are very slender
heat pipes with dimensions of the order of: U-tube diameter, 30 mm, borehole diameter,
150 mm, and borehole length, 100 m. The slenderness of the BHEs makes their
installation relatively simple. However, it exerts enormous computational challenges,
especially when numerical methods are utilized. As a result several theoretical and
computational assumptions and approximations were conducted in order to circumvent
this problem and obtain feasible solutions.

All known solution techniques, such as analytical, semi-numerical, and numerical,
with different complexities and rigor, were utilized for the simulation of heat transfer
processes in BHEs and the surrounding soil mass. Analytical models, such as the
cylindrical heat source model introduced by Carslaw and Jaeger (1947) and the infinite
line-source model developed by Ingersoll et al. (1954), give transient solutions to the
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heat diffusion equation for an infinite cylinder or a line source embedded in an infinite
medium. Both models are computationally intensive, although the line-source model
is numerically more stable (Marcotte and Pasquier, 2008). These models have been
extensively elaborated. Sutton et al. (2003) incorporated groundwater flow in the line-
source model. Zeng et al. (2002, 2003) introduced analytical solution for a line source
of a finite length embedded in a semi-infinite medium. Marcotte and Pasquier (2008)
introduced a computationally efficient solution to finite and infinite line-source models
by performing convolution in the frequency domain using the fast Fourier transform
(FFT) algorithm. Recently, the finite line-source model has been extended by Marcotte
and Pasquier (2009) to account for borehole inclination and borehole head located
below the ground surface.

Semi-numerical solutions have been utilized by, among others, Eskilson and
Claesson (1988). They utilized coupling between the Laplace transform method and the
finite difference method for the simulation of thermally interacting heat extraction
boreholes. Eskilson and Claesson introduced a semi-analytical function, known as the
G-function, to simulate multiple BHEs embedded in an infinite medium. Their original
work was limited to long time steps. Later on, it was elaborated by Yavuzturk and
Spitler (1999), to account for short time steps.

Numerical solutions such as the finite difference and the finite element methods
have also been utilized in this field of applications. Clauser (2002) and Sliwa and Gonet
(2005), among others, developed computational models and computer codes for
modeling coaxial and other types of BHEs using the finite difference method. Muraya
(1994) utilized the finite element method for describing heat transfer processes in the
BHE and the surrounding soil mass. Other important contributions in this field are
presented in Al-Khoury et al. (2005).

In an earlier work (Al-Khoury et al. 2005; Al-Khoury and Bonnier, 2006), a
computationally efficient model based on the Petrov-Galerkin’s finite element method for

Figure 1.
Single and double BHEs
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the analysis of heat flow in single and double geothermal U-tube BHEs was developed.
The BHE was modeled using a time-space line element. However, all significant three-
dimensional aspects, such as geometry and thermodynamic processes, were taken into
considerations. This has allowed for the utilization of coarse meshes, alleviating thus the
need for extremely fine meshes that are typically utilized in modeling such systems.

In spite of the computational efficiency of the above-mentioned work, analytical
and semi-numerical solutions are yet preferable because of their little demands on
computational power and ease of use in engineering practice. For this, in this publication,
a framework for deriving analytical and semi-numerical models for the simulation of
coupled conductive-convective heat transfer processes in a BHE subjected to general
initial and boundary conditions is introduced. The spectral analysis method for solving
partial differential equations is utilized. Two models are presented. The first model is
derived on the basis of the discrete Fourier transform method. The second model is
derived on the basis of the spectral element method (SEM). This method describes field
equations in a homogeneous medium exactly. Combination of different media can be
achieved using the finite element matrix formulation and assembly techniques. As such,
it allows for the simulation of a BHE in contact with a multilayer system. An important
feature of the developed models is their capability to calculate the temperature
distribution in all involved BHE components (pipe-in, pipe-out, and grout) and their
thermal interactions exactly. This feature distinguishes the introduced models from
existing ones, merely those based on the cylindrical heat source and the line-source
models, where only averaged temperature distribution along the BHE is calculated.

2. Boundary value problem of a borehole heat exchanger
In this section, formulation of the boundary value problem of conductive-convective
heat transfer in a single U-tube BHE is presented. The governing equations describing
heat transfer in the involved BHE components and their thermal interactions are first
established. Then, the initial and boundary conditions, which are typically involved in
shallow geothermal systems, are defined.

Governing equations. Consider a single U-tube BHE with a control volume of length dz,
consisting of three pipe components (pipe-in (denoted as i), pipe-out (denoted as o), and
grout (denoted as g); Figure 2). Due to the slenderness of the BHE, heat transfer is
considered only along its axial axis. The radial variation of temperature is in effect
negligible. The pipe components transfer heat across their cross-sectional areas and
exchange fluxes across their surface areas. For a transient condition, equating the rate of
thermal energy entering the control volume to the rate of energy leaving it, the net heat
flow into each of the pipe components can be expressed as (Al-Khoury and Bonnier, 2006):

�c
dTi

dt
dVi � �

d2Ti

dz2
dVi þ �cu

dTi

dz
dVi þ bigðTi � TgÞ dSig ¼ 0

�c
dTo

dt
dVo � �

d2To

dz2
dVo � �cu

dTo

dz
dVo þ bogðTo � TgÞ dSog ¼ 0

�cg
dTg

dt
dVg � �g

d2Tg

dz2
dVg þ bigðTg � TiÞ dSig þ bogðTg � ToÞ dSog ¼ 0

ð1Þ

in which Ti , To, and Tg (K) represent the temperatures in pipe-in, pipe-out, and grout,
respectively, u (m/s) denotes the refrigerant velocity, big and bog (W/m2 K) are the reciprocal
of the heat resistance between pipe-in and the grout and between pipe-out and the grout,
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respectively, c ( J/kg K) is the specific heat of the fluid, � (kg/m3) is the mass density
of the fluid, � cg ( J/m3 K) is the volume heat capacity of the grout, � and �g (W/m K) are the
thermal conductivity of the pipe material and the grout, respectively, and dV and dS
represent the volume and the surface area of the pipe components, respectively.

This formulation illustrates that there is a strong coupling between the grout and
each individual pipe, and an indirect coupling between pipe-in and pipe-out via the
grout. The grout works as an intermediate medium. The heat transfer coefficients for
the pipe-in grout and the pipe-out grout can be described as (Al-Khoury et al., 2005):

big ¼
1

Rig

; bog ¼
1

Rog
ð2Þ

where,

Rig ¼ Rconvection þ Rpipe material ¼
1

ro=ri h
þ ro lnðro=riÞ

�p
ð3Þ

with ri and ro the inner and the outer radius of the pipe, respectively, �p the thermal
conductivity of the pipe material, and,

�hh ¼ Nu�

Di

ð4Þ

where Di is the inner diameter of the pipe, and Nu is the Nusselt number, which can be
defined as:

Nu ¼ 0:664 Re1=2 Pr1=3 for laminar flow ð5Þ

Nu ¼ 0:023 Re0:8 Pr0:4 for turbulent flow ð6Þ

in which Pr is the Prandtl number and Re is the Reynolds number defined as:

Re � u Di

�
ð7Þ

Figure 2.
Control volume of a single
BHE in the z direction
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with u (m/s) the average refrigerant velocity, and � � �m=� the kinematics viscosity
(m2/s) with �m (N s/m2) the refrigerant mass-based viscosity and � (kg/m3) its mass
density. In the literature, the motion is usually considered turbulent for Re > 2;000.
The same is valid for Rog.

Initial and boundary conditions. Initially, at time t ¼ 0, the temperature distribution
in the system is assumed equal to the steady-state temperature of the surrounding soil,
just before the heating operation starts, i.e.,

Tiðz; 0Þ ¼ Toðz; 0Þ ¼ Tgðz; 0Þ ¼ Tsðz; 0Þ ð8Þ

in which Ts is the soil temperature immediately around the pipe.
Operational BHE system usually involves three boundary conditions. The first

boundary condition describes the temperature (or heat flux) of the refrigerant coming
from the heat pump, and just entering the inlet of pipe-in, such that:

Tið0; tÞ ¼ TinðtÞ ð9Þ

The second boundary condition describes the heat transfer processes between the
grout and the neighboring soil mass, as:

�g
@Tgðz; tÞ

@z
¼ bgs½Tgðz; tÞ � Tsðz; tÞ� ð10Þ

in which bgs is the reciprocal of the heat resistance between the soil and the grout that
can be described as (Al-Khoury et al., 2005):

bgs ¼
1

Rig þ Rog þ Rgs
ð11Þ

where Rig is as described in Equation (3) (same is valid for Rog), and Rgs may take this
form:

Rgs ¼
rg lnðrg=reqÞ

�g
ð12Þ

in which rg is the radius of the grout (borehole), and req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

in þ r2
out

q
(rin ¼ pipe-in

radius and rout ¼ pipe-out radius).
The third boundary condition arises from the physics of the problem. At the bottom

of pipe-in, at z ¼ L (where L denotes the length of the BHE), the temperature of pipe-in
is equal to the temperature of pipe-out, such that:

TiðL; tÞ ¼ ToðL; tÞ ð13Þ

This boundary condition can also be described by equating the heat flux from both
pipes, as:

qiðL; tÞ ¼ qoðL; tÞ ð14Þ

where qi and qo are the heat flux going out of pipe-in and going in pipe-out,
respectively.
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3. General solution: the spectral analysis method
Many exact solution techniques have been developed for solving boundary value problems.
Central among these is the transformation method. The Laplace transform is one of the
best known and most widely used integral transformation technique. It is commonly used
to produce an easily solvable ordinary differential equation from a partially differential
equation by transforming it from a certain domain, usually time, to the Laplace domain.
However, in most cases, finding the inverse transform, which is needed to reconstruct the
time function back from the Laplace domain, is quite difficult, if possible, and usually
numerical and asymptotic schemes are resorted in order to extract usable solutions.

An alternative transformation approach is the spectral analysis method (Doyle, 1997).
In this approach, the continuous transform is approximated by the discrete Fourier
transform. This transform possesses all the advantages of the forward transformation
methods, adding to that, it is computational very efficient in the inverse transformation.
The reconstruction of the time function from the transformed (frequency) domain can be
accomplished very economically using the well-known FFT algorithm. This method has
been widely utilized for solving wave propagation problems (Doyle, 1997).

The discrete transform of a space-time function entails the discretization of the
dependent variable in the frequency and the spatial domains. The discretization in
the frequency domain is commonly done by the FFT algorithm. The discretization in
the spatial domain can be done by solving the homogeneous eigenfunction of the
system to obtain its eigenvalues (wavenumbers). The general solution of the system
can then be obtained by summing over all significant frequencies and wavenumbers.

Comparing this solution with solutions involving semi-infinite integration such as
that typically involved in the inverse Laplace or Henkel transforms, two advantages
can be deduced. First, the numerical evaluation of the involved integrals is replaced
by simple algebraic summation. This is particularly important because the integrands
involved are transcendental and their evaluation requires excessive computational
demands. Second, the calculation of the system of equations in the spectral analysis
method is performed only once for any number of output points. This means that the
response of the system at any point can be calculated as a post-processing, without
notable extra computational time. This is not the case in the integral formulations,
where evaluation of the involved integrals must be done for each calculation point.

In this section, two spectral models are presented. The first model is formulated on
the basis of the discrete Fourier transform, and the second model is formulated on
the basis of the SEM. The two solution techniques are related, but the latter utilizes the
finite element matrix formulation technique for solving the involved system of equations.

3.1 Model 1: discrete Fourier transform formulation
Equation (1) represents a system of coupled heat conduction-convection partial
differential equations in space and time. This system of equations can be solved
elegantly using the discrete Fourier transform method. A comprehensive treatment of
this method for solving boundary value problems, mainly wave propagation, is covered
in Doyle (1997). Here, the spectral procedure for solving coupled thermoelastic wave
propagation proposed by Doyle (1988) is tailored to solve heat transfer in vertical BHEs.

A temperature function of time can be discretized as:

Tðz; tmÞ ¼
X

n
T̂Tðz; !nÞ ei!ntm ; T̂Tðz; !nÞ ¼

1

N

X
m

Tðz; tmÞ e�i!ntm ð15Þ
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in which N is the number of the discrete samples, where in the FFT it is usually made
N ¼ 2� ¼ 2; 4; 8; . . . ; 2;048; . . . . For a real input signal, such as the one treated in this
work, the transform is symmetric about a middle frequency, which is usually referred
to as the Nyquist frequency. This means that N real points are transformed into N/2
complex points. For clarity of notation, the summation, the exponential term and the
subscripts are ignored and the transform is represented here as T , T̂T .

Applying Equation (15) to Equation (1), the transformation from the time domain to
the frequency domain leads to:

i!�c T̂Ti dVi � �
d2T̂Ti

dz2
dVi þ �cu

dT̂Ti

dz
dVi þ bigðT̂Ti � T̂TgÞ dSig ¼ 0

i!�c T̂To dVo � �
d2T̂To

dz2
dVo � �cu

dT̂To

dz
dVo þ bogðT̂To � T̂TgÞ dSog ¼ 0

i!�cg T̂Tg dVg � �g
d2T̂Tg

dz2
dVg þ bigðT̂Tg � T̂TiÞ dSig þ bogðT̂Tg � T̂ToÞ dSog ¼ 0

ð16Þ

where it is obvious that the spectral representation of the time derivative:

@T

@t
¼ @

@t

X
T̂Tn ei!nt ¼

X
i !n T̂Tn ei!nt

ð17Þ

has been replaced by:

@T

@t
) i! T̂T ð18Þ

Similarly, the spatial derivatives are represented as:

@mT

@zm
¼ @m

@zm

X
T̂Tn ei!nt ¼

X @mT̂Tn

@zm
ei!nt ) @mT̂T

@zm
ð19Þ

The utilization of the spectral approach has reduced the partial differential equations,
Equation (1), to ordinary differential equations, by converting the time derivative to an
algebraic expression. However, the resulting equations are frequency dependent and
need to be solved for each frequency, !n.

The solution of the coupled system of equations, Equation (16), might have this form:

T̂Ti ¼ A e�ikz; T̂Tg ¼ �AA e�ikz; T̂To ¼ A eikz; ð20Þ

in which A; �AA; A are the integral constants and k denotes the wavenumber, which needs
to be determined. It can be noticed from Equation (20) that the temperature in the pipe-in
and the grout describes heat flow in the z > 0 direction, and the temperature in the pipe-
out describes heat flow in the opposite direction (Figure 1).

Substituting Equation (20) into Equation (16) leads to:

�k2AdVi� �cuikAdViþði!�cdViþ big dSigÞA� big
�AAdSig ¼ 0

�k2AdVo� �cuikAdVoþði!�cdVoþ bog dSogÞA� bog
�AAe�2ikz dSog ¼ 0

�gk2 �AAdVgþði!�cg dVgþ big dSigþ bog dSogÞ�AA� bigAdSig� bogAe2ikz dSog ¼ 0

ð21Þ



HFF
20,7

780

In matrix form, Equation (21) can be written as:

�k2 dVi� �cuikdViþ
i!�cdViþ big dSig

0 �big dSig

�big dSig �bog e2ikz dSog

�gk2 dVgþ i!�cg dVgþ
big dSigþ bog dSog

0
�k2 dVo� �cuikdVoþ
i!�cdVoþ bog dSog

�bog e�2ikz dSog

0
BBBBBBBBB@

1
CCCCCCCCCA

�
A

A
�AA

0
B@

1
CA¼ 0 ð22Þ

Non-trivial solution of Equation (22) can only be obtained by letting the determinate
equal to zero, formulating a complex six-degree polynomial of the form:

a6 k6þ a5 k5þ a4 k4þ a3 k3þ a2 k2þ a1 kþ a0 ¼ 0 ð23Þ

from which the k values can be obtained by solving for its roots. This polynomial
represents the eigenfunction of the BHE system with k denoting its set of eigenvalues
(wavenumbers). Only for this set of eigenvalues do the eigenfunction exist that satisfies
the boundary conditions of the problem. The exact forms of the constants of Equation (23)
are listed in Appendix 1.

The determination of the wavenumbers must be done for every frequency. Six
wavenumbers in three complex conjugates are obtained, representing three basic
modes, one for each BHE component. Accordingly, the solution of the temperature
distribution in the three BHE components can be written as:

T̂Ti ¼ A e�ik1z þ B e�ik2z þ C e�ik3z

T̂Tg ¼ �AA e�ik1z þ �BB e�ik2 z þ �CC e�ik3z

T̂To ¼ A eik1z þ B eik2 z þ C eik3z

ð24Þ

where only flow of the heat sources is taken into consideration. Since Ti , Tg , and To are

coupled, the integral constants, A; B; . . . ; C, are related to each other. The relationship
between the pipe-in constants and the grout constants can be expressed, using
Equation (22), as:

�AA ¼ �YY A ð25Þ

where

�YY ¼ ð� k2 dVi � �cuik dVi þ i!�c dVi þ big dSigÞ=big dSig ð26Þ

In the same way, the relationship between the pipe-out constants and the grout
constants is:
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�AA ¼ Y A ð27Þ

where,

Y ¼ ð�k2 dVo � �cuik dVo þ i!�c dVo þ bog dSogÞ=bog e�2ikz dSog ð28Þ

For each k there is a corresponding �YY and Y .

The integral constants, A;B; . . . ;C, of Equation (24) must be determined from
the boundary conditions. The spectral representation of the boundary conditions,
Equations (9), (10), and (13), can be expressed as:

T̂Tið0; !Þ ¼ T̂Tinð!Þ

�g
@T̂Tgðz; !Þ

@z
¼ bgs½T̂Tgðz; !Þ � T̂Tsðz; !Þ�

T̂TiðL; !Þ ¼ T̂ToðL; !Þ

ð29Þ

The imposition of the third condition indicates that heat flow in the pipe-in is virtually
continuing in the pipe-out, although it is in the opposite direction. This entails that the
system is in effect consisting of two components, pipe-in and grout, that can be
described basically by two modes. The third mode, which is related to pipe-out, would
eventually diminish, i.e. C ¼ 0. The proof of this result is given in Appendix 2. For
C ¼ 0 to be valid implicates that the properties of both pipes, pipe-in and pipe-out,
such as geometry, material, and heat resistance must be identical. In practice, this is the
case. The U-tube pipe is in-effect one pipe, which is inserted in a borehole and filled
with the grout. This makes the properties of the two pipes identical. If, however, the
two pipe properties are made different, especially that the heat resistance of pipe-in
is made different from that for the pipe-out, i.e. big 6¼ bog , the BHE system needs to be
treated as two sub-systems, one representing pipe-in-grout and another pipe-out-grout.
The two sub-systems are coupled at the point where pipe-in and pipe-out meet, z ¼ L.
Equation (29) can then be expanded to become:

Pipe-in-grout:

T̂Tið0; !Þ ¼ T̂Tinð!Þ

��g
@T̂Tgiðz; !Þ

@z
¼ �bgs½T̂Tgiðz; !Þ � T̂Tsðz; !Þ�

ð30Þ

Pipe-out-grout:

T̂ToðL; !Þ ¼ T̂TiðL; !Þ

��g
@T̂Tgoðz; !Þ

@z
¼ �bgs½T̂Tgoðz; !Þ � T̂Tsðz; !Þ�

ð31Þ

with the temperature in the grout taken as an average between the two sub-systems, as:

T̂Tg ¼
1

2
ðT̂Tgi þ T̂TgoÞ ð32Þ
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where T̂Tgi and T̂Tgo represent the grout temperature in contact with pipe-in and pipe-out,
respectively.

Accordingly, Equation (24) can be modified to account for the two sub-systems, as:
Pipe-in-grout:

T̂Ti ¼ Ai e�ik1z þ Bie
�ik2z

T̂Tgi ¼ �AAi e�ik1z þ �BBi e�ik2z
ð33Þ

Pipe-out-grout:

T̂To ¼ Ao eik1z þ Bo eik2z

T̂Tgo ¼ �AAo e�ik1z þ �BBo e�ik2z
ð34Þ

Substituting Equations (33) and (34) into Equations (30) and (31), and by assuming that
soil temperature is constant along the z-axis, but might vary in time, results to:

Pipe-in-grout:

Ai þ Bi ¼ T̂Tinð!Þ

ik1 þ
bgs

�g

� �
�AAi e�ik1z þ ik2 þ

bgs

�g

� �
�BBi e�ik2z ¼ bgs

�g
T̂Tsð!Þ

ð35Þ

Pipe-out-grout:

Ao eik1 L þ Bo eik2 L ¼ T̂TiðL; !Þ

ik1 þ
bgs

�g

� �
�AAo e�ik1z þ ik2 þ

bgs

�g

� �
�BBo e�ik2z ¼ bgs

�g
T̂Tsð!Þ

ð36Þ

Solving for Ai and Bi leads to:

Ai ¼
ik2 þ

bgs

�g

� �
�YY2 e�ik2zT̂Tinð!Þ �

bgs

�g
T̂Tsð!Þ

� �

ik2 þ
bgs

�g

� �
�YY2 e�ik2z � ik1 þ

bgs

�g

� �
�YY1 e�ik1z

ð37Þ

Bi ¼
� ik1 þ

bgs

�g

� �
�YY2 e�ik1zT̂Tinð!Þ þ

bgs

�g
T̂Tsð!Þ

� �

ik2 þ
bgs

�g

� �
�YY2 e�ik2z � ik1 þ

bgs

�g

� �
�YY1 e�ik1z

ð38Þ

And solving for Ao and Bo, leads to:

Ao ¼
ik2 þ

bgs

�g

� �
Y 2 e�ik2z T̂TiðL; !Þ �

bgs

�g
T̂Tsð!Þ

� �

ik2 þ
bgs

�g

� �
Y 2 e�ik2z � ik1 þ

bgs

�g

� �
Y 1 e�ik1z

e�ik1 L ð39Þ
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Bo ¼
� ik1 þ

bgs

�g

� �
Y 2 e�ik1z T̂TiðL; !Þ þ

bgs

�g
T̂Tsð!Þ

� �

ik2 þ
bgs

�g

� �
�YY2 e�ik2z � ik1 þ

bgs

�g

� �
Y 1 e�ik1z

e�ik2 L ð40Þ

where �YY and Y are as defined in Equations (26) and (28), with �YY1 and Y 1 are associated
with the wavenumber, k1, and �YY2 and Y 2 are associated with the wavenumber, k2.

Having determined the eigenvalues and the integral constants, the general solution
of the BHE system of equations can then be obtained by summing over of all
significant modes (in this case two, k1 and k2) and frequencies as:

Tiðz; tÞ ¼
X

n
ðAi e�ik1z þ Bi e�ik2zÞ ei!nt

Toðz; tÞ ¼
X

n
ðAo eik1z þ Bo eik2zÞ ei!nt

Tgðz; tÞ ¼
1

2

X
n
ðð�YY1 Ai þ Y 1 AoÞ e�ik1z þ ð �YY2 Bi þ Y 2 BoÞ e�ik2zÞ ei!nt

h i ð41Þ

The reconstruction of the time history can be done efficiently by the inverse FFT.
Variable soil temperature. In practice, soil temperature surrounding a BHE varies

with depth. For any arbitrary distribution of soil temperature in space, it can be
described using the complex Fourier series of the form:

TsðzÞ ¼
X

m
F̂Fm e�i�mz ð42Þ

in which,

F̂Fm ¼
2�rg

L

ðL

0

TsðzÞ ei�mz dz ð43Þ

where �m represents the spatial modes of the soil temperature distribution along the
axial axis. Incorporation of these modes in the system of equations (Equations (37)-(41))
implies the use of what is known as the Crosswise Superposition (reported by
Tiomeshenko and Goodier, 1970), where Fourier series of different functions at different
axial directions can be added. Accordingly, the general solution of the system of
equations can be obtained by summing over all significant frequencies, eigenvalues,
and soil spatial modes as:

Tiðz; tÞ ¼
X

n

X
m
ðAi e�ik1z þ Bi e�ik2zÞF̂Fm ei!nt

Toðz; tÞ ¼
X

n

X
m
ðAo eik1z þ Bo eik2zÞF̂Fm ei!nt

Tgðz; tÞ ¼
1

2

X
n

X
m
ðð �YY1 Ai þ Y 1 AoÞF̂Fm e�ik1z þ ð�YY2 Bi þ Y 2 BoÞF̂Fm e�ik2zÞ ei!nt

h i
ð44Þ

Summing over m can be made simply by an algebraic sum and over n can be made by
the use of the inverse FFT.
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Model verification. Verification of the model accuracy is illustrated by comparing its
computational results with those obtained from an analytical solution of a simplified
case.

So far, exact solution describing heat transfer in each individual BHE component
and its thermal interactions with other components does not exist. However, the
solution of a one-dimensional convective-dispersive solute transport, developed by van
Genuchten and Alves (1982), can be utilized for solving heat transfer in a single one-
dimensional (1D) pipe in contact with a surrounding medium, where a lateral heat
exchange takes place. The temperature distribution of a fluid moving in a throw-off
heat pipe and subjected to the following initial and boundary conditions:

Tðz; tÞ ¼ Ts; Tð0; tÞ ¼ Tin; @Tð1; tÞ=@z ¼ 0

is given by (see Diersch et al., 2008):

Tðz; tÞ ¼ Tin �
Ts � Tin

2
e
ðu�vÞz

2D erfc
z� vt

2
ffiffiffiffiffi
Dt
p

� �
þ e

ðuþvÞz
2D erfc

zþ vt

2
ffiffiffiffiffi
Dt
p

� �� �
ð45Þ

in which erfc is the complementary error function, D ¼ �=� c is the thermal
diffusivity, u is the fluid velocity, and,

v ¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4’D

u2

r

with ’ ¼ 2 big=ðri �cÞ. Ts represents the temperature in the surrounding medium, soil
in this case, and Tin represents the temperature of the fluid at the inlet of the pipe.
The geometry and material parameters are as the following:

Pipe length 1 m

Pipe radius, ri 0.013 m

Fluid � c 4.1298E6 J/m3 K

Fluid � 0.38 W/m K

Fluid velocity, u 3.75E � 4 m/s

Pipe big ¼ bgs 12 W/m2 K

The external forces are: Ts ¼ 10 �C and Tin ¼ 50 �C. This example is taken from
Diersch et al. (2008), with the emphasis is to describe the model accuracy and capability
to simulate heat transfer in short times.

In the spectral analysis, the external forces are described as:

TinðtÞ ¼
50 0 < t � 3;000 s
0 3;000 < t <1 s

�
; and TsðtÞ ¼ 10 0 < t <1 s ð46Þ

Tin is in effect equal to Ts þ�Tin, where is in this case �Tin ¼ 40 �C. The
temperature time histories of Tin and Ts were transformed to the frequency domain
using the FFT algorithm. The number of transformation samples was 2,048, with a
sample rate of 10 s, giving a time window of 20,480 s.
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The calculation results of the temperature along the pipe after 1,728 s, as calculated
by the van Genuchten model, Equation (45), and the spectral transform model,
Equation (41), are shown in Figure 3. Apparently, the two results are nearly identical.

Figure 4 shows time reconstruction of the fluid temperature histories at different
depths. As expected, the temperature is attenuated and the signal is propagating at a
constant speed.

Another example is introduced here to examine the capability of the spectral model
to describe the temperature distribution along the pipe-in and the pipe-out of a single
U-tube BHE. Same geometry, material parameters and initial and boundary conditions
as in the previous example were utilized. Two cases were studied. In one case the pipe-
out-grout thermal coefficient, bog , was made equal to big , i.e. bog ¼ 12 W/m2 K, and in
another case bog was made very small, bog ¼ 12E � 5 W/m2 K. Figure 5 shows the
temperature distribution in pipe-in and pipe-out for both cases. As expected, in the first

Figure 3.
Spectral analysis vs

van Genuchten

Figure 4.
Time snapshots for

temperatures at different
locations
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case, the fluid along pipe-out continues to interact with the surrounding medium, and
hence the fluid temperature is continuously changing. In the second case, the fluid
temperature at the bottom of pipe-in is kept the same throughout pipe-out. This
indicates that pipe-out is totally insulated.

The grout temperature in both cases is equal to the soil temperature. This is a direct
consequence of the second equation of Equation (29), where a one-way heat flux from
the soil is prescribed. Variation in the grout temperature can only be realized if there is
a two-way thermal interaction between the grout and the soil. This can be achieved if
the BHE model is incorporated with a soil heat transfer model to describe a complete
geothermal system. This will be the focus of a follow-up work.

3.2 Model 2: spectral element formulation
As an alternative way of utilizing the complex Fourier transform for describing the
interaction between a BHE and a soil mass with variable temperature distribution, the
SEM, developed by Doyle (1997), can be utilized. The SEM is a computationally efficient
semi-numerical technique that makes use of the discrete Fourier transformation method
and the finite element method. The basic difference from the finite element method is
that the element stiffness (capacitance) matrix is described exactly. This entails that one
element is sufficient to describe a whole layer or a member. Combination of many layers
or members is made using the finite element matrix formulation and assembly
techniques. Thus, this approach provides all the advantages of the spectral analysis
method plus the efficiency of matrix organization of the finite element method.

The SEM is essentially developed for solving wave propagation problems (Doyle,
1997). Here, the SEM will be tailored to model heat transfer in a typical BHE in contact
with a soil mass.

Unlike wave propagation problems, where reflection occurs at the boundary between
different media, in heat transfer problems, no reflection takes place. This makes the
spectral element of a BHE to consist of only one node, similar to that of the semi-infinite
spectral element usually used in wave propagation problems (also called the throw-off
element). The system of equations is solved at the node, but determination of the
temperature at any point within the element can be done in the post-processing.

Following the discrete Fourier transform model, introduced in section 3.1, the
temperatures in pipe-in, pipe-out, and grout can be described in the local coordinate
system, 	, as:

Figure 5.
Temperature distributions
along pipe-in and pipe-out
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Pipe-in-grout:

T̂Ti ¼ Ai e�ik1	 þ Bi e�ik2	

T̂Tgi ¼ �YY1Ai e�ik1	 þ �YY2Bi e�ik2	
ð47Þ

Pipe-out-grout:

T̂To ¼ Ao eik1	 þ Bo eik2	

T̂Tgo ¼ Y 1 Ao e�ik1	 þ Y 2 Bo e�ik2	
ð48Þ

in which the wavenumbers k1 and k2 can be determined from Equation (23). The
spectral element is assumed to span from 	 ¼ 0 to 	 ¼ h, with h representing its
length. In what follows, the pipe-in-grout system of equations, Equation (47), will be
treated. The pipe-out-grout formulation follows suit.

At the element node, 	 ¼ 0, Equation (47) becomes:

T̂Ti

T̂Tgi

� �
¼ 1 1

�YY1
�YY2

� �
Ai

Bi

� �
ð49Þ

In compact form, Equation (49) can be written as:

A ¼ Q�1T̂T ð50Þ

The corresponding heat fluxes in the pipe-in and the grout are:

q̂qi ¼ ��
@T̂Ti

@z
dVi þ �cu T̂Ti dVi ð51Þ

q̂qgi ¼ ��g
@T̂Tgi

@z
ð52Þ

Considering the thermal interaction between the grout and the soil, the Newton’s law of
cooling can be utilized such that:

q̂qgi ¼ ��g
@T̂Tgi

@z
¼ �bgs½T̂Tgi � T̂Tsðz; !Þ� ð53Þ

Substituting Equation (47) into Equations (51) and (53) results to:

q̂qi ¼ ði k1�e�i k1	 þ �cue�i k1	Þ dVi Ai þ ðik2� e�i k2	 þ �cue�i k2	Þ dViBi

q̂qgs ¼ ði k1�g
�YY1 e�i k1	 þ �YY1 e�i k1	 bgsÞAi þ ði k2 �g

�YY2 e�i k2 	 þ �YY2 e�i k2	bgsÞBi

ð54Þ

in which q̂qgs ¼ bgs T̂Tsðz; !Þ.
In the first element, where the element node is at 	 ¼ z ¼ 0, q̂qi ¼ q̂qin, the element

heat flux equations, Equation (54), can be written as:
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q̂qin

q̂qgs

� �
¼ i k1�Aþ �cu A i k2�Aþ �cu A

i k1�g
�YY1 þ �YY1 bgs i k2�g

�YY2 þ �YY2 bgs

� �
Ai

Bi

� �
ð55Þ

in which A is the cross-sectional area of the pipe-in. Equation (55) can be written in
vector notation as:

q̂q ¼ M̂M A ð56Þ

Substituting vector A from Equation (50) into Equation (56) leads to:

q̂q ¼ M̂M Q�1 T̂T ¼ K̂K T̂T ð57Þ

in which K̂K is equivalent to the stiffness or capacitance matrix in the finite element
method, but here described exactly in the frequency domain.

Solving Equation (57), the temperatures of pipe-in and grout at the node can be
determined. Once the temperature at the node is obtained, the integral coefficients Ai

and Bi can be determined from Equation (50), and the temperature at any point along
the length of the element can be calculated using Equation (47).

For a system consisting of more than one element, a sequential determination of the
temperatures is required. This differs from classical spectral element technique where
element assembly is required. Here, the continuity condition between two sequential
elements, j and jþ 1, is imposed at 	 ¼ h, such that:

q̂q jþ1
i ð0; !Þ ¼ q̂q j

i ðh; !Þ ð58Þ

The heat flux equations, Equation (55), for element jþ 1 can then be described as:

q̂q j
i ðh; !Þ
q̂q jþ1

gs

 !
¼ i k

jþ1

1 �Aþ �cu A i k jþ1
2 �Aþ �cu A

i k jþ1
1 �g

�YY1 þ �YY1 bgs i k jþ1
2 �g

�YY2 þ �YY2 bgs

 !
A jþ1

i

B jþ1
i

 !
ð59Þ

in which the wavenumbers of element jþ 1 need to be determined from Equation (23).
The corresponding temperature distribution in pipe-in and the grout is described as:

T̂T jþ1
i

T̂T jþ1
g

 !
¼ e�i k jþ1

1
	 e�i k jþ1

2
	

�YY1 e�i k jþ1
1
	 �YY2 e�i k jþ1

2
	

� �
A jþ1

i

B jþ1
i

 !
ð60Þ

By substituting the coefficients Ajþ1
i and B jþ1

i from Equation (59) into Equation (60) the
temperatures at any point along element jþ 1 can be determined. The same procedure
can be followed for all elements involved.

The general solution of a system subjected to an external heat flux or prescribed
temperature of the type T̂Tð�; !Þ ¼ F̂Fmð�ÞF̂Fnð!Þ, with F̂Fmð�Þ representing the
spatial distribution of the force and F̂Fð!Þ representing its frequency spectrum, can be
solved by summing over all significant spatial modes and frequencies. The general
solution of a BHE system of equations can be described as:

Tðz; tÞ ¼
X

n

X
m

ĜGðkm; !nÞF̂Fm F̂Fn ei !nt ð61Þ
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in which ĜGðkm; !nÞ ¼ K̂Kðkm; !nÞ�1 representing the transfer function of the system. In
case of a prescribed temperature at the inlet of pipe-in, T̂Tin, F̂Fm ¼ 1, and F̂Fn is calculated
by means of the FFT algorithm. For a time varying soil temperature and a constant
distribution in space, the same is valid. However, for a varying soil temperature in
space a crosswise superposition, as described in the previous section, must be used for
each element.

Element verification. The van Genuchten solution of a single 1D heat pipe, described
in section 3.1, is utilized here to verify the spectral element model. The pipe is
simulated using one spectral element. Material and geometrical properties identical to
those utilized in the previous example are used here. The calculation results obtained
from the spectral element model together with the van Genuchten solution are shown
in Figure 6. Apparently there is a quite good match between the two results.

Figure 6 also shows two finite element calculation results conducted by Diersch et al.
(2008), using the FEFLOW finite element package. Part of the finite element mesh is
shown in Figure 7, where a cut along the BHE is made. Two mesh coarseness along the
vertical axis were utilized: one using 100 elements (slices) and another using 200 elements.
The dimension of the mesh is 20 m � 20 m � 1 m. The heat transfer coefficients of pipe-
in and the grout are made equal, big ¼ bgs, while heat transfer in pipe-out is set to zero,
bog ¼ 0, to eliminate its thermal interaction with other pipe components. The temperature
in the soil is kept constant. All other parameters are as described in the previous example.

The figure shows that even though the finite element results are in good agreement
with the analytical solution, the spectral element results are more accurate. Adding to
that, the spectral element model is remarkably efficient. The SEM required only one
element to describe the whole pipe, while the finite element method needed 200 elements
(in the vertical direction) to come close, but not too close, to the analytical solution.

It might be useful to indicate here that FEFLOW incorporates the BHE model
introduced in Al-Khoury et al. (2005) and Al-Khoury and Bonnier (2006). This model is
capable of reducing the amount of finite elements in the radial direction significantly.
However, in the vertical direction, relatively fine mesh might be needed for short time
analysis, such as the one presented here.

Figure 6.
SEM vs van Genuchten

solution and finite
element solutions
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4. Conclusions
Vertical BHEs are extremely slender geothermal heat pipes. The slenderness makes
their installation in the ground relatively easy. However, it exerts considerable
computational challenges, especially when numerical methods are utilized. In spite
of some successful attempts for circumventing this problem, analytical and semi-
numerical methods are nevertheless preferable in engineering practice. For this, in this
publication, a framework is established for deriving analytical and semi-numerical
models for conductive-convective heat transfer in a typical U-tube BHE and its thermal
interaction with a soil mass. The spectral analysis method is utilized. This method
possesses all the advantages of the forward transform methods. Added to that, the
spectral analysis method is extremely efficient in the inverse transform, which can be
done economically and robustly using the FFT algorithm.

Two spectral analysis models are introduced. The first model describes heat
transfer in a single U-tube borehole exchanger in contact with a soil mass using the
discrete Fourier transform method. The formulation is general such that the external
forces, mainly the temperature or the heat flux of the refrigerant at the inlet of pipe-in,
can vary with time. The soil mass temperature can vary in time and space.

The second model is derived on the basis of the SEM. This method allows for
the simulation of a BHE in contact with a multilayer system. The number of spectral
elements can be as many as the number of layers involved. This method retains all the
advantages of the discrete Fourier transform, in addition to the efficiency of the matrix
formulation and assembly of the finite element method.

Verification and numerical examples have shown that the developed models are
extremely accurate and computationally very efficient. It was shown that one spectral
element could produce results which are more accurate than those produced by
200 finite elements.

Figure 7.
A cut along the BHE in
the finite element mesh



Geothermal
borehole heat

exchangers

791

The introduced models are generic and can be used as a framework for developing
more comprehensive models for shallow geothermal systems consisting of multiple
BHEs embedded in multilayer soil systems. Different techniques, such as analytical,
semi-analytical, or numerical, can be used to model heat transfer in the soil mass. The
thermal interaction between the soil mass and the boreholes can be done by the use of a
staggered (sequential) algorithm, wherein the system is divided into two sub-systems:
one representing the BHEs and the other representing the soil. The two systems are
solved separately, but connected in their external forces, i.e. heat fluxes at their
boundary surfaces.

The BHE models can also be extended to model coaxial and double U-tube BHE’s.
In a follow up paper, some of these issues will be addressed.
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Appendix 1
The eigenfunction of the BHE system is described in Equation (23), as:

a6 k6 þ a5 k5 þ a4 k4 þ a3 k3 þ a2 k2 þ a1 kþ a0 ¼ 0 ðA1:1Þ

The exact forms of the involved constants are:

a6 ¼ �2 �g dVi dVo dVg

a5 ¼ �2i��g�cu dVi dVo dVg

a4 ¼ big�g� dSig dVg dVo � �2c2u2�g dVi dVg dVo þ 2i��g!�c dVi dVg dVo

þ �2bog dVi dSog dVo þ ��gbog dVi dSog dVg þ i�2!�gcg dVi dVg dVo

þ �2big dVi dSig dVo

a3 ¼ 2�2c2u�g! dVi dVg dVo � i�cu�gbog dVi dVg dSog � ibig�g�cu dVo dVg dSig

� 2i� bog�cu dVo dVi dSog þ 2��cu!�gcg dVo dVi dVg � 2i� big�cu dVo dVi dSig

a2 ¼ �bigbog dVi dSig dSog � 2i�big!�c dVi dVo dSig � !2�2c2�g dVi dVo dVg

þ i big!�gcg� dVg dVo dSig � 2�!2�gcg�c dVi dVo dVg � �2c2u2big dVi dVo dSig

þ i!�c�gbog dVi dVg dSog þ bigbog�g dSig dVg dSog � �2c2u2bog dVi dVo dSog

þ bigbog� dSig dVo dSog þ 2i�bog!�c dVi dVo dSog þ ibig�g!�c dVg dVo dSig

þ i�!�gcgbog dVi dVg dSog � i�2c2u2!�gcg dVi dVo dVg

a1 ¼ 2i�2c2u!2�gcg dVi dVo dVg � ibigbog�cu dVo dSig dSog þ �cu!�gcgbog dVi dVg dSog

þ 2�2c2u!big dVi dVo dSig þ 2�2c2u!bog dVi dVo dSog þ big!�gcg�cu dVo dVg dSig

� i�cubigbog dVi dSig dSog

a0 ¼ �i!3�2c2 �gcg dVi dVo dVg � !2�2c2bog dVi dVo dSog � !2�2c2big dVi dVo dSig

� !2�c�gcgbog dVi dVg dSog þ i!�cbigbog dVi dSig dSog þ i!�cbigbog dVo dSig dSog

þ ibig!�gcgbog dVg dSig dSog � big!
2�gcg�c dVo dVg dSig

The convenient form of Equation (A1.1) was obtained using Maple software (see MAPLE 12.0.
Maplesoft, Waterloo Maple Inc, available at: www.maplesoft.com). Solution of Equation (A1.1)
has been conducted using the IMSL mathematical library subroutine for finding the zeros of
polynomials of complex coefficients, DZPOCC (see IMSL, Fortran Numerical Library. MATH/
LIBRARY, 6.0, available at: www.intel.com).

Appendix 2
The relationship between the pipe-in and pipe-out integral coefficients can be determined from
the third boundary condition, Equation (13). The spectral representation of Equation (13) is:

T̂TiðL; !Þ ¼ T̂ToðL; !Þ ðA2:1Þ
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Substituting Equation (20) into Equation (A2.1) results to:

A e�ik L ¼ A eik L ðA2:2Þ

Equation (A2.2) can be written as:

A ¼ A e�2ik L

This is valid for all integral constants such that:

A ¼ A e�2ik1 L

B ¼ B e�2ik2 L

C ¼ C e�2ik3 L

ðA2:3Þ

Substituting Equation (A2.3) into Equation (A2.1), and using Equation (24), leads to:

A e�ik1 L þ B e�ik2 L þ C e�ik3 L ¼ A e�2ik1 L eik1 L þ B e�2ik2 L eik2 L þ C e�2ik3 L eik3 L ðA2:4Þ

The spectral representation of the boundary conditions, Equations (9) and (10), can be written as:

T̂Tið0; !Þ ¼ T̂Tinð!Þ

��g
@T̂Tgðz; !Þ

@z
¼ �bgsðT̂Tg � T̂TsÞ

ðA2:5Þ

The soil temperature is assumed constant along the z-axis, but might vary in time. Substituting
Equations (24) into Equations (A2.5) results to:

Aþ Bþ C ¼ T̂Tin

ik1 þ
bgs

�g

� �
�AA e�ik1z þ ik2 þ

bgs

�g

� �
�BB e�ik2z þ ik3 þ

bgs

�g

� �
�CC e�ik3z ¼ bgs

�g
T̂Ts

ðA2:6Þ

Putting Equations (A2.6) and (A2.4) in a matrix format results to:

1 1 1

ik1 þ
bgs

�g

� �
�YY1 e�ik1z ik2 þ

bgs

�g

� �
�YY2 e�ik2z ik3 þ

bgs

�g

� �
�YY3 e�ik3z

0 0 0

0
BB@

1
CCA

A

B

C

0
B@

1
CA ¼

T̂Tin

bgs

�g
T̂Ts

0

0
BBB@

1
CCCA

ðA2:7Þ

This equation leads to C ¼ 0.
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